Continuous Co-incorporation of Chinese Milk Vetch and Rice Straw with Reduced Chemical Fertilizer Maintains Rice Yield as a Consequence of Increased Carbon and Nitrogen Storage in Soil Aggregates

Full description

Bibliographic Details
Published in:Journal of soil science and plant nutrition. - Springer International Publishing, 2010. - 23(2023), 3 vom: 20. Apr., Seite 3361-3372
Main Author: Bu, Rongyan (Author)
Other Authors: Cheng, Wenlong (Author) Han, Shang (Author) Hu, Run (Author) Wang, Hui (Author) Tang, Shan (Author) Li, Min (Author) Zhu, Qin (Author) Wu, Ji (Author) Cao, Weidong (Author)
Format: Article
Language:English
Published: 2023
ISSN:0718-9516
External Sources:lizenzpflichtig
LEADER 01000caa a22002652 4500
001 OLC2145189963
003 DE-627
005 20240403104953.0
007 tu
008 240118s2023 xx ||||| 00| ||eng c
024 7 |a 10.1007/s42729-023-01253-z  |2 doi 
035 |a (DE-627)OLC2145189963 
035 |a (DE-He213)s42729-023-01253-z-p 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 630  |a 570  |q VZ 
082 0 4 |a 580  |a 630  |q VZ 
084 |a 48.30  |2 bkl 
084 |a 58.52  |2 bkl 
100 1 |a Bu, Rongyan  |e verfasserin  |4 aut 
245 1 0 |a Continuous Co-incorporation of Chinese Milk Vetch and Rice Straw with Reduced Chemical Fertilizer Maintains Rice Yield as a Consequence of Increased Carbon and Nitrogen Storage in Soil Aggregates 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a Despite increasing application of Chinese milk vetch (MV) and rice straw (RS), their combined effects on soil aggregate structure and nutrient storage are poorly understood. A field experiment was conducted to evaluate the effects of co-incorporation of MV and RS on rice yield and soil fertility. Five different fertilization regimes were adopted over a 3-year period. Chemical nitrogen (N) fertilizer was applied at a conventional rate (100%N) and a 40% reduced rate alone (60%N) or combined with MV (60%NMV), RS (60%NRS), and MV plus RS (60%NMVRS). Compared with the 100%N treatment, there were no distinct yield losses in the 60%NMV and 60%NMVRS treatments. Incorporation of organic amendments altered the composition of soil aggregates, as indicated by the increase of large (> 2 mm) and small (0.25–2 mm) macroaggregates and decrease of silt and clay (< 0.053 mm). The organic carbon and nitrogen storage were respectively decreased by 9.2% and 13.9% in the 60%N treatment, and this effect was diminished in the 60%NMVRS treatment, rather than the 60%NMV or 60%NRS treatment. The carbon and nitrogen storage in soil macroaggregates increased in response to organic amendments, and their peak values were observed in the 60%NMVRS treatment. Random forest analysis identified carbon and nitrogen storage in soil macroaggregates as the major contributors to rice yield. Continuous co-incorporation of Chinese milk vetch and rice straw maintained rice productivity with reduced nitrogen application as a consequence of improved soil aggregation (> 0.25 mm), increased carbon and nitrogen storage in macroaggregates, and enhanced nutrient availability. Graphical Abstract 
650 4 |a Green manure cultivation 
650 4 |a Rice straw return 
650 4 |a Rice productivity 
650 4 |a Soil aggregates 
650 4 |a Nitrogen storage 
650 4 |a Carbon storage 
700 1 |a Cheng, Wenlong  |4 aut 
700 1 |a Han, Shang  |4 aut 
700 1 |a Hu, Run  |4 aut 
700 1 |a Wang, Hui  |4 aut 
700 1 |a Tang, Shan  |4 aut 
700 1 |a Li, Min  |4 aut 
700 1 |a Zhu, Qin  |4 aut 
700 1 |a Wu, Ji  |4 aut 
700 1 |a Cao, Weidong  |4 aut 
773 0 8 |i Enthalten in  |t Journal of soil science and plant nutrition  |d Springer International Publishing, 2010  |g 23(2023), 3 vom: 20. Apr., Seite 3361-3372  |h Online-Ressource  |w (DE-627)661265102  |w (DE-600)2611093-3  |w (DE-576)345036565  |x 0718-9516  |7 nnns 
773 1 8 |g volume:23  |g year:2023  |g number:3  |g day:20  |g month:04  |g pages:3361-3372 
856 4 1 |u https://doi.org/10.1007/s42729-023-01253-z  |z lizenzpflichtig  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_OLC 
912 |a SSG-OLC-PHA 
912 |a SSG-OPC-FOR 
912 |a SSG-OPC-GGO 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_250 
912 |a GBV_ILN_281 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2433 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2474 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
936 b k |a 48.30  |j Natürliche Ressourcen  |j Natürliche Ressourcen  |x Land- und Forstwirtschaft  |q VZ 
936 b k |a 58.52  |j Technischer Bodenschutz  |j technischer Gewässerschutz  |j Technischer Bodenschutz  |j technischer Gewässerschutz  |q VZ 
951 |a AR 
952 |d 23  |j 2023  |e 3  |b 20  |c 04  |h 3361-3372