An efficient conservative splitting characteristic difference method for solving 2-d space-fractional advection–diffusion equations

Full description

Bibliographic Details
Published in:Computational and applied mathematics. - Springer International Publishing, 2003. - 42(2023), 1 vom: 27. Jan.
Main Author: Wang, Ning (Author)
Other Authors: Zhang, Xinxia (Author) Zhou, Zhongguo (Author) Pan, Hao (Author) Wang, Yan (Author)
Format: electronic Article
Language:English
Published: 2023
ISSN:1807-0302
External Sources:lizenzpflichtig
LEADER 01000naa a22002652 4500
001 OLC2133620656
003 DE-627
005 20230506155236.0
007 cr uuu---uuuuu
008 230506s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s40314-023-02198-w  |2 doi 
035 |a (DE-627)OLC2133620656 
035 |a (DE-He213)s40314-023-02198-w-e 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 510  |q VZ 
084 |a 31.76$jNumerische Mathematik  |2 bkl 
084 |a 31.80$jAngewandte Mathematik  |2 bkl 
100 1 |a Wang, Ning  |e verfasserin  |4 aut 
245 1 0 |a An efficient conservative splitting characteristic difference method for solving 2-d space-fractional advection–diffusion equations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a © The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a Abstract In this paper, we develop an efficient splitting characteristic difference method for solving 2-dimensional two-sided space-fractional advection–diffusion equation. The intermediate numerical solutions are first computed by the piecewise parabolic method (PPM) where $$\bar{x}_i$$ is solved by the explicit second-order Runge–Kutta scheme. Then, the interior solutions are computed by the splitting $$\sigma $$-implicit characteristic difference method. By some auxiliary lemmas, our scheme is proved stable in $$L^2$$-norm. The error estimate is given and we prove our schemes are of second-order convergence in space. Numerical experiments are used to verify our theoretical analysis. 
650 4 |a Spatial-fractional 
650 4 |a PPM 
650 4 |a Characteristic difference method 
650 4 |a Stability 
650 4 |a Error estimate 
700 1 |a Zhang, Xinxia  |4 aut 
700 1 |a Zhou, Zhongguo  |0 (orcid)0000-0001-9009-3404  |4 aut 
700 1 |a Pan, Hao  |4 aut 
700 1 |a Wang, Yan  |4 aut 
773 0 8 |i Enthalten in  |t Computational and applied mathematics  |d Springer International Publishing, 2003  |g 42(2023), 1 vom: 27. Jan.  |h Online-Ressource  |w (DE-627)47617502X  |w (DE-600)2171678-X  |w (DE-576)281265704  |x 1807-0302  |7 nnns 
773 1 8 |g volume:42  |g year:2023  |g number:1  |g day:27  |g month:01 
856 4 0 |u https://dx.doi.org/10.1007/s40314-023-02198-w  |z lizenzpflichtig  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_OLC 
912 |a SSG-OPC-MAT 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_250 
912 |a GBV_ILN_281 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2474 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
936 b k |a 31.76$jNumerische Mathematik  |q VZ  |0 106408194  |0 (DE-625)106408194 
936 b k |a 31.80$jAngewandte Mathematik  |q VZ  |0 106419005  |0 (DE-625)106419005 
951 |a AR 
952 |d 42  |j 2023  |e 1  |b 27  |c 01